
SCU: A Hardware Accelerator for Smart Contract
Execution

Tao Lu
Electrical and Computer Engineering

Louisiana State University
Baton Rouge, LA, USA

tlu4@lsu.edu

Lu Peng
Department of Computer Science

Tulane University
New Orleans, LA, USA

lpeng3@tulane.edu

Abstract—Smart contracts and the blockchain have recently
been widely used in many application fields. Current smart
contracts are executed on general-purpose CPUs and still have
a large room to improve performance. In this paper, we first
analyze the most popular public blockchain platform Ethereum
and characterize smart contracts running on its ecosystem.
After identifying its performance limitations, we propose a
heterogeneous processor Smart Contract Unit (SCU), which is a
hardware-based accelerator in place of the current EVM design.
With our proposed novel RISC-style SCU ISA and heterogeneous
architecture, SCU can leverage instruction-level parallelism and
transaction-level parallelism during smart contract processing
and boost its execution performance. Furthermore, SCU can
be configured and adapted to different workloads in order to
remove bottlenecks. We implement and evaluate the proposed
SCU design on a Xilinx FPGA platform. Our design achieves a
significant speedup compared to the software implementation on
an Intel CPU and runs a few times faster than state-of-the-art
design.

Index Terms—Blockchains, Smart contracts, Hardware accel-
eration, Multicore processing

I. INTRODUCTION

Blockchain technology originated from the invention of

Bitcoin [13] in 2008 was quickly adopted to build a series

of cryptocurrencies in the years after. In 2015, it went beyond

just digital currency by adopting the concept of Smart Contract

(SC) [8] introduced by the Ethereum [18] project. Smart

contracts enable software developers to program sophisticated

code and business logic that can be executed and validated

in the distributed network. Thanks to the robustness stem-

ming from its decentralized behavior, many businesses have

started to utilize blockchain and smart contracts to build their

infrastructure, including financial technology (Fintech) [15],

Internet of Things (IoT) [14], and supply chain [11]. However,

these applications are far from maturity due to blockchain

technology’s poor performance and scalability.

The blockchain is a chain of blocks recording transactions

that can atomically alter the global state. Each block must

be first proposed by one peer and then endorsed by all

other validator peers to ensure correctness in the distributed

network. During both the proposal and validation stages, each

transaction in a block must be executed locally by the peer.

We call this block processing, and its underperformance has

been the bottleneck of the overall system. Several works

have been done to address this issue using both software

and hardware approaches. Dickerson et al. [9] proposed a

method to run transactions concurrently through a heuristic

algorithm. Javaid et al. proposed an FPGA-based co-processor

to offload the CPU at the network level [10]. Chen et al.

[6] proposed a speculative transaction execution approach to

improve Ethereum performance. BPU [12] was proposed as

an FPGA accelerator with High-Level Synthesis (HLS) to

address the EVM execution. In this paper, we are the first

to propose a hardware-based heterogeneous architecture and

a RISC-V-like Instruction Set Architecture (ISA) to improve

the performance at a micro-architecture level and achieve

significant improvement.

In this paper, we analyzed the most popular blockchain

Ethereum and spotted several interesting observations which

led to the motivation for this work. First, we investigated

the current execution model, the Ethereum Virtual Machine

(EVM), and found opportunities to achieve instruction-level

parallelism by using pipelining and dynamic execution. How-

ever, in the current design, instructions are based on a stack-

based architecture and forced to be executed in order, which

limits the performance at the micro-architecture level. We thus

proposed RISC-V-like register-based architecture to replace

the current design and break the limitation. Second, we look

into each block and found that the data dependencies between

transactions are not heavy, which leaves room for transaction-

level parallelism. Independent transactions can be executed

in parallel by utilizing multiple cores and assigned smartly

through a scheduling algorithm. The results are validated in or-

der to guarantee the final state is correct. Third, after checking

the block history, we found several smart contracts are always

called more frequently than others in a short period, which

we call hotspots. Hotspots exist because a popular project in

the real world can always draw a lot of attention during a

short period, typically around its launch time or commercial

advertisements and promotions. This pattern suggests that an

application-based accelerator is beneficial. Last, in the second

half of 2022, the Ethereum network had a major update: the

adoption of the new Proof-of-Stake (PoS) consensus and the

Beacon chain [1]. After this update, the execution layer was

separated from the consensus layer, reducing the consensus

time significantly. Therefore, the execution layer has been the
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bottleneck for the overall performance, and it is decoupled

from the consensus, which strengthens our motivation above

to explore the better performance of the block processing.

Our contributions can be summarized as follows:

• We perform a detailed analysis of the Ethereum history

record and discover the trend of smart contracts and the

architectural level limitations of the current execution

model (EVM). Such observation is used to guide our

architectural design below.

• We propose a RISC-V-like ISA [2] that enables a dy-

namically scheduled pipeline that exploits instruction-

level parallelism (ILP) and a heterogeneous multicore that

supports thread-level parallelism (TLP) for SC execution.

• We implemented SCU on an FPGA platform and evalu-

ated the performance against state-of-the-art works. The

result shows a significant performance improvement com-

pared to state-of-the-art implementations and an Intel

CPU.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background and our obser-

vations that lead to our motivations.

A. Ethereum and Block Processing

Ethereum is a blockchain-based platform that supports the

creation of decentralized applications (DApps) and smart con-

tracts. Initially, Ethereum relied on a proof-of-work (PoW)

consensus algorithm to validate transactions and add new

blocks to the blockchain. However, this approach had several

drawbacks, including high energy consumption and a poten-

tial centralization of mining power. To address these issues,

Ethereum is in the process of upgrading to a proof-of-stake

(PoS) consensus algorithm known as Ethereum 2.0 [1]. With

PoS, rather than relying on miners to validate transactions,

the network relies on validators who hold a certain amount

of Ethereum as collateral. These validators are incentivized

to act honestly and secure the network, as they risk losing

their collateral if they act maliciously. The PoS upgrade is

expected to significantly reduce energy consumption and in-

crease transaction throughput, making Ethereum more scalable

and efficient.

Ethereum’s execution layer is part of the platform that

executes smart contracts and processes transactions. The exe-

cution layer operates on top of the Ethereum Virtual Machine

(EVM), which is a software environment designed to execute

code written in the Solidity programming language. When

a user initiates a transaction on the Ethereum network, the

transaction is broadcast and processed by nodes (computers)

participating in the network. The transaction is then validated

and included in a block, along with other validated transac-

tions. Once the block is added to the blockchain, the execution

layer processes the transactions within the block, executing the

smart contracts and updating the global state of the network.

This process involves running the code contained within each

contract, updating the state of the network accordingly, and

recording the results on the blockchain. The whole procedure

is known as block processing, and we find its performance

issues that need to be addressed.

B. EVM ISA and Execution Model

In the Ethereum design, smart contracts are coded using

high-level programming language and compiled into a low-

level bytecode according to the Instruction Set Architecture

(ISA) defined in the Ethereum Yellow Paper [18]. This ISA

is used by the execution model, the EVM, which executes

the Ethereum SC and updates the database. The current EVM

uses a simple stack-based architecture with additional memory

and storage buffer. The input to the EVM has two main parts.

One is the transaction going to be processed, and the other

is the state of the current database, including the code and

the storage of the target account. As we introduced above,

EVM will create a local copy of the target account with the

code and storage field. Then it will fetch the bytecodes from

the code buffer and execute them one by one. The result of

each operation will be pushed into the 256-bits integer stack

and accessed by the following operations. A large chunk of

data could be saved into the Memory buffer, which is a byte

array. The data in Memory are temporary and will be discarded

when the execution is finished. On the other hand, any changes

intending to be updated to the global state database will be first

applied to the local storage copy and only update to the global

when EVM finishes execution successfully. If any exceptions

happen during the execution, the current local storage will be

discarded, and nothing will be changed.

We analyze the execution model of the current EVM archi-

tecture to identify performance challenges. Figure 1 shows the

data flow and the logic of the EVM design. The processing

of a valid transaction starts from the up-left step 1. EVM will

first get the target address from the transaction and search the

state database for the target account. Then in step 2, EVM

needs to check whether the target account has occupied the

code field. If the code field of the target account is empty,

EVM will discover that the transaction is a token transfer

transaction and thus will change the balance directly (go to

step 3, after checking the legality) and then update State

DB (step 4). Alternatively, if the target account is a smart

contract, the EVM will set up a local copy using fetched

code and storage in step 5. Then it will enter the execution

loop of 6, 7, 9, 10. During the execution, any exceptional

halt (such as unknown bytecode or invalid jump destination)

will result in a termination immediately and the changes will

be reverted (steps 8, 11). The execution will continue until a

STOP or RETURN operation is encountered and EVM will

exit normally (step 12). Then EVM will start to calculate the

gas (step 13), which is a small amount of fee charged for each

computation on the Ethereum blockchain. If the provided gas

in the transaction is enough (step 14), it will be consumed, and

a receipt will be generated (step 16). At last, EVM will exit to

finalize the state changes (step 4). Alternatively, an insufficient

fund will result in an Out-of-Gas error, and reversion of any

changes has been made (steps 15, 11).
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Fig. 1. EVM Data Flow

C. Limitations of the EVM

Based on the above analysis, the current EVM design

has several limitations that prevent it from achieving good

performance.

1. Lack of parallelism and slow speed: The current EVM

implementation is based on a software virtual machine that

bytecodes are processed one by one in a fetch, execute, and

finalize loop, which means little parallelism is employed in this

procedure. Moreover, the nature of software virtual machines

makes them run very slowly. According to our measurement,

the CPU utilization rate is usually around 10%.

2. Stack-based model: The current EVM design is using an

antiqued stack-based model, which means all the intermediate

results must be pushed into the stack before they can be reused.

One instruction will read its operand from the stack only when

it is being executed, which stops the parallelism. In addition,

when an instruction reads its operands from the stack, it must

use the value at the top of the stack. This brings up two main

issues. Firstly, if we want to read an operand and also save it

for future use, the compiler must insert DUP instructions to

create a copy. This brings unnecessary delays just for preparing

the operands. Secondly, when we want to reuse a deep value,

the compiler must add swap or DUP operations to move the

deep value to the top or create a copy at the top of the stack;

this also brings additional control operations and hurts the

performance.

3. Variable length instruction: The Ethereum bytecode

mixes the instruction and the value of the PUSH operation

together. This results in the fact that instructions can have

variable lengths. Therefore, Ethereum bytecodes cannot be

parsed after being fetched until the length of each instruction

is determined. This generates difficulties in directly applying

the conventional pipeline technique, which needs to fetch

instructions for each cycle.

These limitations lead to our proposed work, which will be

discussed in the following sections.

III. HARDWARE ARCHITECTURE DESIGN

To overcome the challenges spotted above, we propose

an innovative architecture for smart contract processing, the
Smart Contract Unit (SCU), where we make three major

improvements. First, we propose a register-based RISC ISA,

which can be translated from the stack-based bytecode seam-

lessly at runtime. Second, based on our novel ISA, we imple-

ment instruction-level parallelism using dynamic pipelining,

register renaming, and in-order commitment. Last, we propose

a heterogeneous architecture to combine the configurability

and flexibility of our design to suit different applications and

further improve performance. In the following sections, we

present our design details for these improvements.

A. Instruction-level Parallelism

EVM is implemented using a bytecode format and stack-

based machine because it results in a smaller size of the

code. Since SC code must be stored on the blockchain

forever, the cost of storage is considered huge. On the other

hand, the stack-based architecture is not efficient in exploiting

parallelism. Therefore, not Ethereum specifically, for all the

blockchain systems, there is a need to translate a storage-

friendly ISA on-chain to a performance-friendly ISA off-chain.

In this paper, we propose a RISC-style ISA to bridge the gap.

1) Register-based RISC: As mentioned, the original

Ethereum stack-based ISA has limitations that stop instruction-

level parallelism, such as dynamic execution. Therefore, we

propose SCU ISA, which is a RISC-style register-based in-

struction set. It is compatible with the current Ethereum’s

bytecode ISA when an interpreter is introduced. Compared

to CISC ISA (like x86), RISC, with its streamlined, efficient

instruction set and simpler, more power-effective hardware

design, aligns well with the growing demands for energy

efficiency and high performance in mobile and embedded sys-

tems. Its adaptability and straightforward design, exemplified

by architectures like ARM and open-standard RISC-V, are

setting the trend, offering a potentially superior approach in

modern computing scenarios where simplicity, scalability, and

power efficiency are paramount.
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We use 32 256-bit registers to replace the current operator

stack. The width of 256 is determined because it is the length

of the hash value used in Ethereum and the defined longest

value in Ethereum’s overall design. The number of registers is

also chosen carefully. Although Ethereum’s original stack is

1000 items deep, it can rarely be used more than 32. This is be-

cause the design rationale of Ethereum and the existence of gas

discourage developers from deploying complex calculations

on Ethereum because they are not financially efficient (fees

are high). Based on our observation of the history of smart

contract execution, using a total of 32 registers is sufficient and

redundant. If in any rare case, these architectural registers are

not enough, the system will just wait until occupied registers

are released. This will only not hurt the correctness nor the

security of our system.

2) SCU Execution Engine: The design above is imple-

mented by a hardware architecture, which we call SCU

Execution Engine. Figure 2 shows the architecture details

and its companion Input Buffer. The input buffer holds every

information needed to execute a transaction, including the

transaction, the code, and the input set. On the right is the

SCU execution engine, which is in charge of executing the

code and producing the result state. The execution engine is

equipped with a series of submodules to implement the Out-of-

Order (OoO) pipeline. Each instruction is handled by a variety

of execution units (EU) such as Adder, Logic, etc. The number

of each type is flexible, and we divide them into two groups:

the basic EU and the Configurable EU. The basic EU has one

unit of each type so that it is fully functional and capable

of handling any smart contracts. The configurable EU has the

extra resources that enable more instructions to run in parallel,

and this part is explained in the next subsection.

In Figure 2 we illustrate the submodules and the seven

pipeline stages marked by colored arrows. Step 1 is to fetch

the code from the instruction buffer into an instruction queue

(IQ) entry with a window size of 32. In step 2, the decoder will

decode the bytecode and translate the instruction into our SCU

ISA instructions. Then in step 3, when the instructions are

issued to the reservation station, a register renaming approach

will be applied to further remove unnecessary register depen-

dencies. When the required operands and execution units are

ready, the reservation station dispatches the awaiting instruc-

tion to its proper target execution unit, as step 4 indicates. Then

in step 5, each execution unit will operate the corresponding

executions, and the result will be written on the common data

bus (CDB) to update the reservation station and the reorder

buffer (ROB). Since the execution sequence in steps 2-5 can

be out-of-order, we use an in-order commit to finalize the

changes to the register file, memory, and the local storage

buffer in step 6. Finally, the last step is to generate the EVM

receipt and write it back to the local storage, which is used to

generate the output set at the end of execution.

3) Configurable Units: As we mentioned in the smart

contract characterization, there exist some frequently used

hotspot SCs. Therefore, it would be beneficial if we could have

customized optimization on these specific smart contracts. We

propose configurable units, where we can equip the SCU

execution engine with more extra units to avoid potential

structure hazards and further boost the performance, as the

bold box shown in Figure 2.

To make our design functional, using at least one of each

unit introduced above is necessary. With the help of additional

resources, more instructions can be executed simultaneously

and improve performance. However, there are situations where

extra resources are not worth the cost. For example, the

additional multiplier may not be beneficial because, in the

current smart contract ecosystem, the appearance of consecu-

tive multiplication is very rare. It means when the previous

multiplication is done, and typically, the later one has not

been issued yet. Therefore, the second multiplier will rarely be

used. Furthermore, data dependency will also result in wasting

additional resources. For example, if a division follows an

exponential operation, it cannot be executed in two multipliers

concurrently due to data dependency. Essentially, adding more

execution units may be helpful but not always good. Therefore,

we designed our SCU as a configurable design on FPGA that

can adjust a number of execution units to suit different tasks.

Another reason that we are targeting the FPGA platform is that

it allows protocol changes and is cheaper compared to ASIC.

ASIC could be faster but will fix the circuit, and it is much

more expensive when adopted at the early stage. Given the fact

that the blockchain industry is rapidly changing, we believe

the FPGA solution is better in terms of balancing performance

and cost.

We understand the golden rule is to maximize overall

performance with minimum overhead. However, determining

the best configuration for different benchmarks is non-trivial.

To explore the design space, we follow a heuristic approach to

get the numbers of extra functional units. We first profile the

target smart contract and get its instruction breakdown, which

is the proportion of each type of our ISA. Next, we allocate

extra functional units according to the popularity of each

type. The often-used instruction type will be paired with more

execution units. Then we trace how the new configuration

works by monitoring whether the additional resource is used.

If the utilization rate is less than the ratio of hardware cost

increase, we stop adding units. This is a simpler method

compared to a comprehensive design space exploration where

we can find the Pareto Optimality [17]. In this case, a software

simulator needs to be developed to exhaustively search all

possible configurations. Our method needs relatively less work

but can still achieve a good performance improvement, which

will be shown in section 6.

B. Transaction-level Parallelism

In Ethereum design, transactions must be executed in the

order of their appearance in the block. This is because the

potential data dependency between transactions will be broken

if they are executed in the wrong order. However, running mul-

tiple transactions in parallel is still achievable. We propose two

techniques: two-step validation and heterogeneous multicore

design to address this issue.
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Fig. 2. Micro-architecture of SCU Core

1) Two-step Validation: Normally, a transaction will only

affect the storage field of their target smart contract and have

no influence on the other ones. Therefore, data dependency

only exists between transactions sent to the same target smart

contract. In such cases, the sequence of their execution is

deterministic since the resulting state of the leading transaction

will be used as the input state of the followers. Thus, we define

the two-step validation that separates the execution from the

validation of the state and these two steps can run in parallel.

We divide the whole validation process into execution
validation and state validation. The execution validation is

to check the correctness of the EVM execution result, given

the transaction and its input state. The input state is the state

of the storage field of the target smart contract, which is

a key-value map that stores the permanent storage of the

application. Normally, each transaction will query a series of

data from the local database. We define the input set (IS)

as the key-value pairs that are queried by each transaction.

Such IS can be monitored by tracking the storage reading

operation SLOAD. Similarly, the output set (OS) is defined

as the key-value pairs that get modified during the execution.

Such information is collected by tracking the storage access

operations (SSTORE). The IS can be collected by the miner

and broadcast to validation peers along with the block so that

we know which key values are used for a specific transaction.

On the receiver side, we load the key-value pairs to the local

buffer using the received IS so that transactions can run before

the state of its predecessor is locally reproduced, which allows

transaction-level parallelism.

On the other hand, the state validation is to check the

correctness of the input set and the output set. Both sets need

to reflect the real state of the global database, which is checked

by the state validator module. Only if the input set and output

set are both valid, the state is considered valid. Meanwhile,

for a specific transaction, only if both its state validation and

execution validation pass, the execution of this transaction is

considered to be successful, and the result is finalized. Since

we divide the whole process into two isolated phases and run

them in parallel, we call this approach the two-step validation.

This approach is an efficient correctness check at the execution

layer, which is not an enhanced security feature. Neither does

this approach bring more security or privacy concerns, nor

does this strengthen the existing security at the consensus

layer.

2) Design Overview and Transaction-level Parallelism:
Figure 3 shows the SCU design overview and the TLP

dataflow. Upon receiving a new block, the transaction sched-

uler will scan the transactions and schedule the sequence of

their execution, as arrow 1 indicated. Then the scheduler will

load the shared cache with SC’s code(flow 2). The shared

cache is designed with a content-aware approach to increase

the hit ratio. Since the SCU engine works as a validator, the

miner can broadcast hotspot SCs to all validators. We prioritize

the hotspot SCs’ code to stay in the cache instead of using

the conventional least recently used (LRU) algorithm. Next,

the scheduler dispatches the validation task to the available

SCU core (flow 3). These cores are equipped with a local

buffer and the SCU Engine, which is introduced in III-A2.

Detailed architecture of the input buffer and Execution Engine

are illustrated in Figure 2. In this example, we present a setup

of two cores, which could be either big cores or small cores.

Therefore, the scheduler will load the shared cache with the

target SC’s code section and forward the transaction to the

two engines separately. Upon receiving the transaction, SCU

engines load its local buffer with the input and storage section,

fetch the code from the shared memory, and start its execution.

When the task is completed, the output set will be written to

the state validator for correctness checking (flow 4). At the
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Fig. 3. SCU Design Overview and Heterogeneous Multicore Design

same time as the above flow, the state validator will use the

schedule map from the transaction scheduler (via flow 5) and

access the global database (flow 6 right) to perform the state

validation. After the validator finishes its job, an update to

the global database will finalize the processing of the current

block, as the left arrow of flow 6 shows.

TLP is exploited using the Tx scheduler, the state validator,

and multiple SCU engines. As mentioned before, the depen-

dencies between transactions are detected, and a schedule map

is generated following the format in Figure 3. The Tx column

shows the index of transactions. The SC column lists the

address to fetch the SC code. Then the IS chk and OS chk

columns indicate which OS or IS should be checked in the

state validation respectively. As we can see in this example,

Tx1 has no predecessor so IS1 must be checked against the

DB. Tx3 is dependent on the result of Tx1 so IS3 must be

checked against OS1. In other words, IS3 and OS3 should

match, and such correctness checking is done by the state

validator. Meanwhile, there are no dependencies between Tx1

and Tx2 since Addr1 and Addr2 are different. Therefore, Tx1

and Tx2 can be assigned to Engine0 and Engine1 in parallel.

The Engines will use the received IS1 and IS2 to start the

execution validation without waiting for the state validation

between IS1 and DB.

3) Heterogeneous Multicore Design: To achieve better per-

formance, we propose two types of cores, which we call big

and small. A big core is equipped with an dynamic execution

engine and focuses on the best performance with a cost of

more hardware resources. A small core is equipped with an

in-order pipeline engine, which consumes fewer hardware

resources but is more efficient. With these two cores in hand,

our accelerator can be configured in a homogeneous design,

which uses several cores of the same type, or a heterogeneous

design, which uses a mixed type of cores. In this paper, we

Fig. 4. Task Scheduling with Dependency

coded the design with the number and the type of the cores.

For example, our SCU 2B design is equipped with two big

cores, and our SCU 1B2S design is equipped with one big

core and two small cores.

For multi-core design, the challenge is how to schedule

transactions into different cores. There are several techniques

that can be used in multi-processor scheduling, such as [16],

[20], and [7]. Our approach is based on a dependency graph

as shown on the left of Figure 4 (a). This graph is generated

by gathering the transaction dependency and the execution

time of each transaction. The dependency can be extracted by

checking the target address and the index of each transaction.

The execution time can be broadcasted by the miner to

all validators, and this information can be used to schedule

the task more efficiently. This is the unique advantage of

blockchain validation with a known transaction execution

time from the miner. In Figure 4, each node stands for a

transaction, and its index is labeled on the left shoulder.
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The arrows between nodes illustrate the dependency between

transactions and the transactions calling the same SC forms a

dependency chain (DC). The number in the node denotes the

execution time of the transaction. We use this information to

schedule transactions to the cores. Algorithm 1 elaborates the

scheduling strategy. We start by initializing an empty queue

for each core and generating the dependency graph described

above. Given the graph, we then calculate the total weight of

each DC by adding up the execution time along the chain and

sorting all chains in descending weight order. Then starting

with the heaviest unassigned DC, we assign it to the lightest

queue. The weight of the queue is the total weight of all

assigned tasks in it. Later, when the execution starts, each

core will pop a transaction from its own queue. Note that

we are trying to balance the load between cores to minimize

the idle time. However, they do not need to be perfectly

balanced. When a core’s queue is empty, it is allowed to

steal transactions from other cores’ queues, red which means

queued DC can be moved from the busy core to the idle core.

In this way, the execution time of each queue will likely be

very close. Furthermore, this algorithm works well naturally

for symmetric designs since all the cores are the same, and

the execution time is consistent among cores. However, for

asymmetric or heterogeneous designs, the execution times are

different between big and small cores. Therefore a correction

parameter can be used to adjust the time to ensure that the

total weight is relatively close between cores. For example, if

the big core has a speedup of x over the small core, the weight

of a DC on the small cores will be x times the one on the big

cores because the small cores are slower.

Algorithm 1: Transaction Scheduling for Multicores

1 Initializing Queues for each core: Q1, Q2, ...;

2 Generating dependency graph for the block;

3 Calculating the weight of each chain using its

execution time from the miner;

4 Sorting the chains in the order of descending weight ;

5 while there is unassigned chain Ci do
6 calculating the weight of each queue (Q1, Q2...);

7 adjusting the weight if a heterogeneous design;

8 assigning Ci to the Qk, which has the minimal

weight;

9 end

Figure 4 shows an example of our scheduling algorithm.

Group (a) illustrates the dependency tree of an example block

and the execution time is normalized. Given this graph, we can

calculate the weight of each dependency chain (DC) and rank

them in descending order as shown in group (b). Then starting

from DC 1, we put each chain as a whole into the lightest

queue. This algorithm works for both homogeneous and het-

erogeneous designs with any number of cores. Group (c) and

group (d) show the scheduling result of a homogeneous duo-

core design and a heterogeneous 1B2S design respectively.

Note that for the duo-core design (Group c), we fill Q1 and

Q2 with DC 1 and DC 2 first. Then DC 3 will be put in Q2

because the weight of Q2 is the smaller one at this time. At

last, DC 4 will go to Q2 by comparing the total weight of

each queue. Group (d) shows the scenario of a heterogeneous

design where we have one Big core and two Small cores. In

this example, Q1 belongs to the big core and we assume a

big core is twice faster than the small core, thus we have an

adjustment parameter of 0.5. When the DC 1 is scheduled to

Q1 on B core, we saw the weight is adjusted to half to reflect

the speedup of the big cores. In this case, the first three DCs

will go to each idle core, which results in the total weight of

each queue being 9, 9, and 7 respectively. Therefore the last

task DC 4 will go to the lightest Q3, even though the Core 1

(big core) doubles the performance.

IV. EVALUATION

To evaluate the effectiveness of SCU architecture, we imple-

mented our design on an FPGA platform. In this section, we

introduce our experimental setups and then display the result

of performance speedups.

A. Experimental Setup

1) Benchmarks: To test the improvement from ILP and

OoO execution, we use some real blocks to evaluate our

design. For the block and transaction information, the data was

retrieved from the Etherscan.io [3] website via API, which

is an Ethereum history browser. For the database data, we

reproduce the state before execution based on the result from

tracing transactions. In order to be accessible by FPGA, we

developed a Python tool to interpret the raw data from JSON

format into the FPGA readable format. Then the data is loaded

from the host machine to the FPGA via PCIe using Xilinx

XRT tools.

2) Platform: We implement the SCU on Xilinx’s latest

data center level FPGA Alveo 250 [19], which has an A-

U250-P64G-PQ-G FPGA on board. We design the pipeline

components using Verilog and System Verilog at the RTL

level. The design is packaged into a Vitis kernel to be

compatible with the Au250 board. At last, the kernel is loaded

to the FPGA board connected via PCIe, which is clocked by

an optimized frequency at 300MHz. On the other hand, we run

the software baseline for performance test on an Intel i7-7700k

[4] quad-core CPU at 4.2GHz.

3) Architecture Setup: To test the speedup contribution

from TLP and heterogeneous architecture, we test and compare

the results between five different setups. As Table I shows,

SCU 1B and SCU 1S are respectively equipped with one

big core (dynamic core) and one small core (in-order core).

The big core is equipped with configurable execution units

and a 128-slot ROB to support the seven-stage pipeline as

introduced before. The small core is equipped with only

the basic execution units and follows a four-stage in-order

pipeline: fetch, decode, execute, and writeback. Therefore,

by comparing these two cores, we can show the single-core

performance and the contribution of dynamic execution of the

big cores. Similarly, SCU 2B and SCU 2S are equipped with
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TABLE I
EXECUTION TIME OF SCU BENCHMARKS

Bench Block # of Txs CPU (us) BPU (us) SCU 1S (us) SCU 1B (us) SCU 2S (us) SCU 2B (us) SCU 1B2S (us)
B1 6653186 190 66040 1708.4 913.24 475.81 546.1 364.59 318.51
B2 6653197 102 56669 1410.9 791.32 356.77 466.7 335.48 301.68
B3 6653232 115 57129 1129.9 813.59 372.94 656.2 290.73 235.76
B4 6653208 78 37037 1410.9 647.9 358.89 407.4 261.99 243.73
B5 6653220 9 4184 165.7 99.74 83.54 70.1 73.91 52.21
B6 6653205 159 46092 1595.8 1112.88 545.92 735.5 431.62 372.01
B7 6653209 16 3696 218.4 115.36 64.63 83.9 64.61 64.65

two identical big and small cores, respectively, which shows

the contribution of the TLP by distributing tasks among two

identical cores. Lastly, we add a heterogeneous architecture

SCU 1B2S, which is equipped with one big core and two

small cores. The number of small cores is two because the

hardware resource used by two small cores are close to one

big core. Therefore, the total cost of 2B is close to 1B2S.

Comparing these two groups shows whether the trade-off

between big and small cores makes a difference.

B. Results

Table I records the execution time of all the benchmarks run

by native CPU implementation Geth, the previous BPU imple-

mentation, and five SCU versions. The CPU result is measured

by running the original Geth (v1.9.26) [5] implementation

multiple times and recording the average execution time.

The BPU design implemented an in-order pipeline without

a heterogeneous design and the result is reproduced using the

same setups as introduced in [12]. The rest of the table re-

flects our latest implementation of SCU and its heterogeneous

configurations. SCU 1S has one small core, which is the in-

order pipelined execution engine, and SCU 1B has one big

core, which is the dynamic pipelined execution engine. As

the name suggests, a small core consumes fewer hardware

resources and area, and a big core provides better performance,

benefiting from the OoO techniques. All measured time has a

unit of microseconds. In addition, SCU 2S and SCU 2B are

recorded to show the duo-core speedup against its single-core

version. Lastly, the SCU 1B2S version is compared to show

the advantage of the heterogeneous design.

Fig. 5. SCU Performance Speedups

Figure 5 shows the speedup of our latest version with

various setups against the original CPU and BPU implemen-

TABLE II
HARDWARE RESULTS OF THE DESIGNS

Configs FPGA utility Freq.
DSP FF LUT BRAM18 MHz

BPU 402 67646 82246 25 100
SCU 1S 225 9799 142816 206 300
SCU 1B 405 78163 204448 206 300
SCU 2S 450 20687 301501 378 300
SCU 2B 810 165011 431612 378 300

SCU 1B2S 855 98850 505947 422 300

tation. The CPU performance is standardized as one, and the

other bars stand for the speedup against the CPU version.

First, we can examine the speed-up of our single core version

SCU 1S and SCU 1B. As we can see, the SCU 1S performs

better than BPU, although they are both using the in-order

pipeline. This is because we optimized SCU 1S with a higher

clock frequency and a more precise pipeline stage control

using Verilog against the BPU’s implementation by High-level

synthesis (HLS), which limited its frequency optimization.

The SCU 1B has notably better performance against the BPU

due to the benefit of dynamic execution. The improvement

is insignificant for some benchmarks (such as B5). This is

because not all transactions benefit from the out-of-order

setting. When the transaction has many short operations, it

gains a relatively lower performance boost. The OoO setting is

beneficial when time-consuming instructions can be bypassed

without having to wait for the result.

Then we check the speedup of TLP by comparing SCU 2S

against SCU 1S. We can see the duo-core over single-core is

between 1.4 and 1.7. It is clear that the extra core is fully used

and contributes to the speedup. The speed cannot be doubled

because a critical path exists that dependent transactions must

be executed in order. In some cases, a long dependency chain

on one core will result in a second core being idle, which

limits the speedup to 1.4. Then we can compare SCU 2B

against SCU 1B, and we can see the speed up is about 1.3x.

This is because the big core is much faster than the small

one, so when two big cores work in parallel, the cache loading

becomes the bottleneck. By checking the use of a global queue

and shared cache, we see a high cache miss rate, and cores

often wait for the cache to be loaded. Finally, we compare the

speedup between SCU 1B2S and SCU 2B. We can observe

an average 15% speedup even though the hardware resource

used is similar. This is due to the help of the extra number
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of small cores and the critical path scheduling. We force the

critical path to be executed by the big core and offload other

easy transactions to the less powerful small cores. The reason

for B7 and B4, where improvement is not significant, is that

the total number of transactions is relatively small, and one of

the smart contracts is large, so the cache loading dominates

the processing time. The resource usage and frequency of the

FPGA designs are listed in Table II.

V. CONCLUSION

In this paper, we explore the current smart contract behavior

on the Ethereum platform by performing a detailed analysis of

the public history and identifying its performance limitations.

Based on the observations, we propose high-performance

architecture designs SCU for smart contract processing. This

design relies on our proposed novel RISC ISA to imple-

ment instruction-level parallelism. We have applied dynamic

scheduling, Register Renaming, and heterogeneous multicores

to improve performance. Meanwhile, we propose the two-step

validation algorithm to decouple data dependency and achieve

transaction-level parallelism. Finally, we evaluate the SCU de-

sign on a Xilinx FPGA platform. As we have shown, the SCU

design has a significant speedup compared to state-of-the-art

implementations and an even more substantial improvement

compared to the current processing of the Ethereum client on

the CPU. Finally, SCU’s modularized and configurable design

retains the flexibility to be tuned for different ecosystems or

blockchains.
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